pub struct ChunksExactMut<'data, T: Send> { /* private fields */ }
Expand description

Parallel iterator over mutable non-overlapping chunks of a slice

Implementations

Return the remainder of the original slice that is not going to be returned by the iterator. The returned slice has at most chunk_size-1 elements.

Note that this has to consume self to return the original lifetime of the data, which prevents this from actually being used as a parallel iterator since that also consumes. This method is provided for parity with std::iter::ChunksExactMut, but consider calling remainder() or take_remainder() as alternatives.

Return the remainder of the original slice that is not going to be returned by the iterator. The returned slice has at most chunk_size-1 elements.

Consider take_remainder() if you need access to the data with its original lifetime, rather than borrowing through &mut self here.

Return the remainder of the original slice that is not going to be returned by the iterator. The returned slice has at most chunk_size-1 elements. Subsequent calls will return an empty slice.

Trait Implementations

Formats the value using the given formatter. Read more
Internal method used to define the behavior of this parallel iterator. You should not need to call this directly. Read more
Produces an exact count of how many items this iterator will produce, presuming no panic occurs. Read more
Internal method used to define the behavior of this parallel iterator. You should not need to call this directly. Read more
Divides an iterator into sequential blocks of exponentially-increasing size. Read more
Divides an iterator into sequential blocks of the given size. Read more
Collects the results of the iterator into the specified vector. The vector is always cleared before execution begins. If possible, reusing the vector across calls can lead to better performance since it reuses the same backing buffer. Read more
Unzips the results of the iterator into the specified vectors. The vectors are always cleared before execution begins. If possible, reusing the vectors across calls can lead to better performance since they reuse the same backing buffer. Read more
Iterates over tuples (A, B), where the items A are from this iterator and B are from the iterator given as argument. Like the zip method on ordinary iterators, if the two iterators are of unequal length, you only get the items they have in common. Read more
The same as Zip, but requires that both iterators have the same length. Read more
Interleaves elements of this iterator and the other given iterator. Alternately yields elements from this iterator and the given iterator, until both are exhausted. If one iterator is exhausted before the other, the last elements are provided from the other. Read more
Interleaves elements of this iterator and the other given iterator, until one is exhausted. Read more
Splits an iterator up into fixed-size chunks. Read more
Splits an iterator into fixed-size chunks, performing a sequential fold() on each chunk. Read more
Splits an iterator into fixed-size chunks, performing a sequential fold() on each chunk. Read more
Lexicographically compares the elements of this ParallelIterator with those of another. Read more
Determines if the elements of this ParallelIterator are equal to those of another Read more
Determines if the elements of this ParallelIterator are unequal to those of another Read more
Determines if the elements of this ParallelIterator are lexicographically less than those of another. Read more
Determines if the elements of this ParallelIterator are less or equal to those of another. Read more
Determines if the elements of this ParallelIterator are lexicographically greater than those of another. Read more
Determines if the elements of this ParallelIterator are less or equal to those of another. Read more
Yields an index along with each item. Read more
Creates an iterator that steps by the given amount Read more
Creates an iterator that skips the first n elements. Read more
Creates an iterator that yields the first n elements. Read more
Searches for some item in the parallel iterator that matches the given predicate, and returns its index. Like ParallelIterator::find_any, the parallel search will not necessarily find the first match, and once a match is found we’ll attempt to stop processing any more. Read more
Searches for the sequentially first item in the parallel iterator that matches the given predicate, and returns its index. Read more
Searches for the sequentially last item in the parallel iterator that matches the given predicate, and returns its index. Read more
Searches for items in the parallel iterator that match the given predicate, and returns their indices. Read more
Produces a new iterator with the elements of this iterator in reverse order. Read more
Sets the minimum length of iterators desired to process in each rayon job. Rayon will not split any smaller than this length, but of course an iterator could already be smaller to begin with. Read more
Sets the maximum length of iterators desired to process in each rayon job. Rayon will try to split at least below this length, unless that would put it below the length from with_min_len(). For example, given min=10 and max=15, a length of 16 will not be split any further. Read more
The type of item that this parallel iterator produces. For example, if you use the for_each method, this is the type of item that your closure will be invoked with. Read more
Internal method used to define the behavior of this parallel iterator. You should not need to call this directly. Read more
Internal method used to define the behavior of this parallel iterator. You should not need to call this directly. Read more
Executes OP on each item produced by the iterator, in parallel. Read more
Executes OP on the given init value with each item produced by the iterator, in parallel. Read more
Executes OP on a value returned by init with each item produced by the iterator, in parallel. Read more
Executes a fallible OP on each item produced by the iterator, in parallel. Read more
Executes a fallible OP on the given init value with each item produced by the iterator, in parallel. Read more
Executes a fallible OP on a value returned by init with each item produced by the iterator, in parallel. Read more
Counts the number of items in this parallel iterator. Read more
Applies map_op to each item of this iterator, producing a new iterator with the results. Read more
Applies map_op to the given init value with each item of this iterator, producing a new iterator with the results. Read more
Applies map_op to a value returned by init with each item of this iterator, producing a new iterator with the results. Read more
Creates an iterator which clones all of its elements. This may be useful when you have an iterator over &T, but you need T, and that type implements Clone. See also copied(). Read more
Creates an iterator which copies all of its elements. This may be useful when you have an iterator over &T, but you need T, and that type implements Copy. See also cloned(). Read more
Applies inspect_op to a reference to each item of this iterator, producing a new iterator passing through the original items. This is often useful for debugging to see what’s happening in iterator stages. Read more
Mutates each item of this iterator before yielding it. Read more
Applies filter_op to each item of this iterator, producing a new iterator with only the items that gave true results. Read more
Applies filter_op to each item of this iterator to get an Option, producing a new iterator with only the items from Some results. Read more
Applies map_op to each item of this iterator to get nested parallel iterators, producing a new parallel iterator that flattens these back into one. Read more
Applies map_op to each item of this iterator to get nested serial iterators, producing a new parallel iterator that flattens these back into one. Read more
Reduces the items in the iterator into one item using op. The argument identity should be a closure that can produce “identity” value which may be inserted into the sequence as needed to create opportunities for parallel execution. So, for example, if you are doing a summation, then identity() ought to produce something that represents the zero for your type (but consider just calling sum() in that case). Read more
Reduces the items in the iterator into one item using op. If the iterator is empty, None is returned; otherwise, Some is returned. Read more
Parallel fold is similar to sequential fold except that the sequence of items may be subdivided before it is folded. Consider a list of numbers like 22 3 77 89 46. If you used sequential fold to add them (fold(0, |a,b| a+b), you would wind up first adding 0 + 22, then 22 + 3, then 25 + 77, and so forth. The parallel fold works similarly except that it first breaks up your list into sublists, and hence instead of yielding up a single sum at the end, it yields up multiple sums. The number of results is nondeterministic, as is the point where the breaks occur. Read more
Applies fold_op to the given init value with each item of this iterator, finally producing the value for further use. Read more
Performs a fallible parallel fold. Read more
Performs a fallible parallel fold with a cloneable init value. Read more
Sums up the items in the iterator. Read more
Multiplies all the items in the iterator. Read more
Computes the minimum of all the items in the iterator with respect to the given comparison function. If the iterator is empty, None is returned; otherwise, Some(min) is returned. Read more
Computes the item that yields the minimum value for the given function. If the iterator is empty, None is returned; otherwise, Some(item) is returned. Read more
Computes the maximum of all the items in the iterator with respect to the given comparison function. If the iterator is empty, None is returned; otherwise, Some(max) is returned. Read more
Computes the item that yields the maximum value for the given function. If the iterator is empty, None is returned; otherwise, Some(item) is returned. Read more
Takes two iterators and creates a new iterator over both. Read more
Searches for some item in the parallel iterator that matches the given predicate and returns it. This operation is similar to find on sequential iterators but the item returned may not be the first one in the parallel sequence which matches, since we search the entire sequence in parallel. Read more
Searches for the sequentially first item in the parallel iterator that matches the given predicate and returns it. Read more
Searches for the sequentially last item in the parallel iterator that matches the given predicate and returns it. Read more
Applies the given predicate to the items in the parallel iterator and returns any non-None result of the map operation. Read more
Applies the given predicate to the items in the parallel iterator and returns the sequentially first non-None result of the map operation. Read more
Applies the given predicate to the items in the parallel iterator and returns the sequentially last non-None result of the map operation. Read more
Searches for some item in the parallel iterator that matches the given predicate, and if so returns true. Once a match is found, we’ll attempt to stop process the rest of the items. Proving that there’s no match, returning false, does require visiting every item. Read more
Tests that every item in the parallel iterator matches the given predicate, and if so returns true. If a counter-example is found, we’ll attempt to stop processing more items, then return false. Read more
Creates an iterator over the Some items of this iterator, halting as soon as any None is found. Read more
Wraps an iterator with a fuse in case of panics, to halt all threads as soon as possible. Read more
Creates a fresh collection containing all the elements produced by this parallel iterator. Read more
Unzips the items of a parallel iterator into a pair of arbitrary ParallelExtend containers. Read more
Partitions the items of a parallel iterator into a pair of arbitrary ParallelExtend containers. Items for which the predicate returns true go into the first container, and the rest go into the second. Read more
Partitions and maps the items of a parallel iterator into a pair of arbitrary ParallelExtend containers. Either::Left items go into the first container, and Either::Right items go into the second. Read more
Creates an iterator that yields n elements from anywhere in the original iterator. Read more
Creates an iterator that skips n elements from anywhere in the original iterator. Read more
Creates an iterator that takes elements from anywhere in the original iterator until the given predicate returns false. Read more
Creates an iterator that skips elements from anywhere in the original iterator until the given predicate returns false. Read more
Collects this iterator into a linked list of vectors. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The parallel iterator type that will be created.
The type of item that the parallel iterator will produce.
Converts self into a parallel iterator. Read more
The alignment of pointer.
The type for initializers.
Initializes a with the given initializer. Read more
Dereferences the given pointer. Read more
Mutably dereferences the given pointer. Read more
Drops the object pointed to by the given pointer. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.