1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
//! A graph representation for computing tree diffs.
use std::{
cell::{Cell, RefCell},
cmp::min,
fmt,
hash::{Hash, Hasher},
};
use bumpalo::Bump;
use hashbrown::hash_map::RawEntryMut;
use smallvec::{smallvec, SmallVec};
use strsim::normalized_levenshtein;
use self::Edge::*;
use crate::{
diff::{
changes::{insert_deep_unchanged, ChangeKind, ChangeMap},
stack::Stack,
},
hash::DftHashMap,
parse::syntax::{AtomKind, Syntax, SyntaxId},
};
/// A vertex in a directed acyclic graph that represents a diff.
///
/// Each vertex represents two pointers: one to the next unmatched LHS
/// syntax, and one to the next unmatched RHS syntax.
///
/// For example, suppose we have `X A` on the LHS and `A` on the
/// RHS. Our start vertex looks like this.
///
/// ```text
/// LHS: X A RHS: A
/// ^ ^
/// ```
///
/// From this vertex, we could take [`Edge::NovelAtomLHS`], bringing
/// us to this vertex.
///
/// ```text
/// LHS: X A RHS: A
/// ^ ^
/// ```
///
/// Alternatively, we could take the [`Edge::NovelAtomRHS`], bringing us
/// to this vertex.
///
/// ```text
/// LHS: X A RHS: A
/// ^ ^
/// ```
#[derive(Debug, Clone)]
pub(crate) struct Vertex<'s, 'b> {
pub(crate) neighbours: RefCell<Option<&'b [(Edge, &'b Vertex<'s, 'b>)]>>,
pub(crate) predecessor: Cell<Option<(u32, &'b Vertex<'s, 'b>)>>,
// TODO: experiment with storing SyntaxId only, and have a HashMap
// from SyntaxId to &Syntax.
pub(crate) lhs_syntax: Option<&'s Syntax<'s>>,
pub(crate) rhs_syntax: Option<&'s Syntax<'s>>,
parents: Stack<'b, EnteredDelimiter<'s, 'b>>,
lhs_parent_id: Option<SyntaxId>,
rhs_parent_id: Option<SyntaxId>,
}
impl<'s, 'b> PartialEq for Vertex<'s, 'b> {
fn eq(&self, other: &Self) -> bool {
// Strictly speaking, we should compare the whole
// EnteredDelimiter stack, not just the immediate
// parents. By taking the immediate parent, we have
// vertices with different stacks that are 'equal'.
//
// This makes the graph traversal path dependent: the
// first vertex we see 'wins', and we use it for deciding
// how we can pop.
//
// In practice this seems to work well. The first vertex
// has the lowest cost, so has the most PopBoth
// occurrences, which is the best outcome.
//
// Handling this properly would require considering many
// more vertices to be distinct, exponentially increasing
// the graph size relative to tree depth.
let b0 = match (self.lhs_syntax, other.lhs_syntax) {
(Some(s0), Some(s1)) => s0.id() == s1.id(),
(None, None) => self.lhs_parent_id == other.lhs_parent_id,
_ => false,
};
let b1 = match (self.rhs_syntax, other.rhs_syntax) {
(Some(s0), Some(s1)) => s0.id() == s1.id(),
(None, None) => self.rhs_parent_id == other.rhs_parent_id,
_ => false,
};
// We do want to distinguish whether we can pop each side
// independently though. Without this, if we find a case
// where we can pop sides together, we don't consider the
// case where we get a better diff by popping each side
// separately.
let b2 = can_pop_either_parent(&self.parents) == can_pop_either_parent(&other.parents);
b0 && b1 && b2
}
}
impl<'s, 'b> Eq for Vertex<'s, 'b> {}
impl<'s, 'b> Hash for Vertex<'s, 'b> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.lhs_syntax.map(|node| node.id()).hash(state);
self.rhs_syntax.map(|node| node.id()).hash(state);
self.lhs_parent_id.hash(state);
self.rhs_parent_id.hash(state);
can_pop_either_parent(&self.parents).hash(state);
}
}
/// Tracks entering syntax List nodes.
#[derive(Clone, PartialEq)]
enum EnteredDelimiter<'s, 'b> {
/// If we've entered the LHS or RHS separately, we can pop either
/// side independently.
///
/// Assumes that at least one stack is non-empty.
PopEither((Stack<'b, &'s Syntax<'s>>, Stack<'b, &'s Syntax<'s>>)),
/// If we've entered the LHS and RHS together, we must pop both
/// sides together too. Otherwise we'd consider the following case to have no changes.
///
/// ```text
/// Old: (a b c)
/// New: (a b) c
/// ```
PopBoth((&'s Syntax<'s>, &'s Syntax<'s>)),
}
impl<'s, 'b> fmt::Debug for EnteredDelimiter<'s, 'b> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let desc = match self {
EnteredDelimiter::PopEither((lhs_delims, rhs_delims)) => {
format!(
"PopEither(lhs count: {}, rhs count: {})",
lhs_delims.size(),
rhs_delims.size()
)
}
EnteredDelimiter::PopBoth(_) => "PopBoth".to_owned(),
};
f.write_str(&desc)
}
}
fn push_both_delimiters<'s, 'b>(
entered: &Stack<'b, EnteredDelimiter<'s, 'b>>,
lhs_delim: &'s Syntax<'s>,
rhs_delim: &'s Syntax<'s>,
alloc: &'b Bump,
) -> Stack<'b, EnteredDelimiter<'s, 'b>> {
entered.push(EnteredDelimiter::PopBoth((lhs_delim, rhs_delim)), alloc)
}
fn can_pop_either_parent(entered: &Stack<EnteredDelimiter>) -> bool {
matches!(entered.peek(), Some(EnteredDelimiter::PopEither(_)))
}
fn try_pop_both<'s, 'b>(
entered: &Stack<'b, EnteredDelimiter<'s, 'b>>,
) -> Option<(
&'s Syntax<'s>,
&'s Syntax<'s>,
Stack<'b, EnteredDelimiter<'s, 'b>>,
)> {
match entered.peek() {
Some(EnteredDelimiter::PopBoth((lhs_delim, rhs_delim))) => {
Some((lhs_delim, rhs_delim, entered.pop().unwrap()))
}
_ => None,
}
}
fn try_pop_lhs<'s, 'b>(
entered: &Stack<'b, EnteredDelimiter<'s, 'b>>,
alloc: &'b Bump,
) -> Option<(&'s Syntax<'s>, Stack<'b, EnteredDelimiter<'s, 'b>>)> {
match entered.peek() {
Some(EnteredDelimiter::PopEither((lhs_delims, rhs_delims))) => match lhs_delims.peek() {
Some(lhs_delim) => {
let mut entered = entered.pop().unwrap();
let new_lhs_delims = lhs_delims.pop().unwrap();
if !new_lhs_delims.is_empty() || !rhs_delims.is_empty() {
entered = entered.push(
EnteredDelimiter::PopEither((new_lhs_delims, rhs_delims.clone())),
alloc,
);
}
Some((lhs_delim, entered))
}
None => None,
},
_ => None,
}
}
fn try_pop_rhs<'s, 'b>(
entered: &Stack<'b, EnteredDelimiter<'s, 'b>>,
alloc: &'b Bump,
) -> Option<(&'s Syntax<'s>, Stack<'b, EnteredDelimiter<'s, 'b>>)> {
match entered.peek() {
Some(EnteredDelimiter::PopEither((lhs_delims, rhs_delims))) => match rhs_delims.peek() {
Some(rhs_delim) => {
let mut entered = entered.pop().unwrap();
let new_rhs_delims = rhs_delims.pop().unwrap();
if !lhs_delims.is_empty() || !new_rhs_delims.is_empty() {
entered = entered.push(
EnteredDelimiter::PopEither((lhs_delims.clone(), new_rhs_delims)),
alloc,
);
}
Some((rhs_delim, entered))
}
None => None,
},
_ => None,
}
}
fn push_lhs_delimiter<'s, 'b>(
entered: &Stack<'b, EnteredDelimiter<'s, 'b>>,
delimiter: &'s Syntax<'s>,
alloc: &'b Bump,
) -> Stack<'b, EnteredDelimiter<'s, 'b>> {
match entered.peek() {
Some(EnteredDelimiter::PopEither((lhs_delims, rhs_delims))) => entered.pop().unwrap().push(
EnteredDelimiter::PopEither((lhs_delims.push(delimiter, alloc), rhs_delims.clone())),
alloc,
),
_ => entered.push(
EnteredDelimiter::PopEither((Stack::new().push(delimiter, alloc), Stack::new())),
alloc,
),
}
}
fn push_rhs_delimiter<'s, 'b>(
entered: &Stack<'b, EnteredDelimiter<'s, 'b>>,
delimiter: &'s Syntax<'s>,
alloc: &'b Bump,
) -> Stack<'b, EnteredDelimiter<'s, 'b>> {
match entered.peek() {
Some(EnteredDelimiter::PopEither((lhs_delims, rhs_delims))) => entered.pop().unwrap().push(
EnteredDelimiter::PopEither((lhs_delims.clone(), rhs_delims.push(delimiter, alloc))),
alloc,
),
_ => entered.push(
EnteredDelimiter::PopEither((Stack::new(), Stack::new().push(delimiter, alloc))),
alloc,
),
}
}
impl<'s, 'b> Vertex<'s, 'b> {
pub(crate) fn is_end(&self) -> bool {
self.lhs_syntax.is_none() && self.rhs_syntax.is_none() && self.parents.is_empty()
}
pub(crate) fn new(
lhs_syntax: Option<&'s Syntax<'s>>,
rhs_syntax: Option<&'s Syntax<'s>>,
) -> Self {
let parents = Stack::new();
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id: None,
rhs_parent_id: None,
}
}
}
/// An edge in our graph, with an associated [`cost`](Edge::cost).
///
/// A syntax node can always be marked as novel, so a vertex will have
/// at least a NovelFoo edge. Depending on the syntax nodes of the
/// current [`Vertex`], other edges may also be available.
///
/// See [`set_neighbours`] for all the edges available for a given `Vertex`.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub(crate) enum Edge {
UnchangedNode {
depth_difference: u32,
/// Is this node just punctuation? We penalise this case,
/// because it's more useful to match e.g. a variable name
/// than a comma.
probably_punctuation: bool,
},
EnterUnchangedDelimiter {
depth_difference: u32,
},
ReplacedComment {
levenshtein_pct: u8,
},
ReplacedString {
levenshtein_pct: u8,
},
NovelAtomLHS {},
NovelAtomRHS {},
// TODO: An EnterNovelDelimiterBoth edge might help performance
// rather doing LHS and RHS separately.
EnterNovelDelimiterLHS {},
EnterNovelDelimiterRHS {},
}
impl Edge {
pub(crate) fn cost(self) -> u32 {
match self {
// Matching nodes is always best.
UnchangedNode {
depth_difference,
probably_punctuation,
} => {
// TODO: Perhaps prefer matching longer strings? It's
// probably easier to read.
// The cost for unchanged nodes can be as low as 1,
// but we penalise nodes that have a different depth
// difference, capped at 40.
let base = min(40, depth_difference + 1);
// If the node is only punctuation, increase the
// cost. It's better to have unchanged variable names
// and novel punctuation than the reverse.
//
// We want a sufficiently large punctuation cost such
// that unchanged variables always win, even if there
// are replacement edges elsewhere.
//
// Replacement edges have a cost between 500 and 600,
// so they can be up to 100 less than two novel nodes.
// If we have replacements either side of a node
// (e.g. see comma_and_comment_1.js), then that's
// potentially a cost difference of 200.
base + if probably_punctuation { 200 } else { 0 }
}
// Matching an outer delimiter is good.
EnterUnchangedDelimiter { depth_difference } => 100 + min(40, depth_difference),
// Otherwise, we've added/removed a node.
NovelAtomLHS {} | NovelAtomRHS {} => 300,
EnterNovelDelimiterLHS { .. } | EnterNovelDelimiterRHS { .. } => 300,
// Replacing a comment is better than treating it as
// novel. However, since ReplacedComment is an alternative
// to NovelAtomLHS and NovelAtomRHS, we need to be
// slightly less than 2 * 300.
ReplacedComment { levenshtein_pct } | ReplacedString { levenshtein_pct } => {
500 + u32::from(100 - levenshtein_pct)
}
}
}
}
fn allocate_if_new<'s, 'b>(
v: Vertex<'s, 'b>,
alloc: &'b Bump,
seen: &mut DftHashMap<&Vertex<'s, 'b>, SmallVec<[&'b Vertex<'s, 'b>; 2]>>,
) -> &'b Vertex<'s, 'b> {
// We use the entry API so that we only need to do a single lookup
// for access and insert.
match seen.raw_entry_mut().from_key(&v) {
RawEntryMut::Occupied(mut occupied) => {
let existing = occupied.get_mut();
// Don't explore more than two possible parenthesis
// nestings for each syntax node pair.
if let Some(allocated) = existing.last() {
if existing.len() >= 2 {
return allocated;
}
}
// If we have seen exactly this graph node before, even
// considering parenthesis matching, return it.
for existing_node in existing.iter() {
if existing_node.parents == v.parents {
return existing_node;
}
}
// We haven't reached the graph node limit yet, allocate a
// new one.
let allocated = alloc.alloc(v);
existing.push(allocated);
allocated
}
RawEntryMut::Vacant(vacant) => {
let allocated = alloc.alloc(v);
// We know that this vec will never have more than 2
// nodes, and this code is very hot, so use a smallvec.
//
// We still use a vec to enable experiments with the value
// of how many possible parenthesis nestings to explore.
let existing: SmallVec<[&'b Vertex<'s, 'b>; 2]> = smallvec![&*allocated];
vacant.insert(allocated, existing);
allocated
}
}
}
/// Does this node look like punctuation?
///
/// This check is deliberately conservative, because it's hard to
/// accurately recognise punctuation in a language-agnostic way.
fn looks_like_punctuation(node: &Syntax) -> bool {
match node {
Syntax::Atom { content, .. } => content == "," || content == ";" || content == ".",
_ => false,
}
}
/// Pop as many parents of `lhs_node` and `rhs_node` as
/// possible. Return the new syntax nodes and parents.
fn pop_all_parents<'s, 'b>(
lhs_node: Option<&'s Syntax<'s>>,
rhs_node: Option<&'s Syntax<'s>>,
lhs_parent_id: Option<SyntaxId>,
rhs_parent_id: Option<SyntaxId>,
parents: &Stack<'b, EnteredDelimiter<'s, 'b>>,
alloc: &'b Bump,
) -> (
Option<&'s Syntax<'s>>,
Option<&'s Syntax<'s>>,
Option<SyntaxId>,
Option<SyntaxId>,
Stack<'b, EnteredDelimiter<'s, 'b>>,
) {
let mut lhs_node = lhs_node;
let mut rhs_node = rhs_node;
let mut lhs_parent_id = lhs_parent_id;
let mut rhs_parent_id = rhs_parent_id;
let mut parents = parents.clone();
loop {
if lhs_node.is_none() {
if let Some((lhs_parent, parents_next)) = try_pop_lhs(&parents, alloc) {
// Move to next after LHS parent.
// Continue from sibling of parent.
lhs_node = lhs_parent.next_sibling();
lhs_parent_id = lhs_parent.parent().map(Syntax::id);
parents = parents_next;
continue;
}
}
if rhs_node.is_none() {
if let Some((rhs_parent, parents_next)) = try_pop_rhs(&parents, alloc) {
// Move to next after RHS parent.
// Continue from sibling of parent.
rhs_node = rhs_parent.next_sibling();
rhs_parent_id = rhs_parent.parent().map(Syntax::id);
parents = parents_next;
continue;
}
}
if lhs_node.is_none() && rhs_node.is_none() {
// We have exhausted all the nodes on both lists, so we can
// move up to the parent node.
// Continue from sibling of parent.
if let Some((lhs_parent, rhs_parent, parents_next)) = try_pop_both(&parents) {
lhs_node = lhs_parent.next_sibling();
rhs_node = rhs_parent.next_sibling();
lhs_parent_id = lhs_parent.parent().map(Syntax::id);
rhs_parent_id = rhs_parent.parent().map(Syntax::id);
parents = parents_next;
continue;
}
}
break;
}
(lhs_node, rhs_node, lhs_parent_id, rhs_parent_id, parents)
}
/// Compute the neighbours of `v` if we haven't previously done so,
/// and write them to the .neighbours cell inside `v`.
pub(crate) fn set_neighbours<'s, 'b>(
v: &Vertex<'s, 'b>,
alloc: &'b Bump,
seen: &mut DftHashMap<&Vertex<'s, 'b>, SmallVec<[&'b Vertex<'s, 'b>; 2]>>,
) {
if v.neighbours.borrow().is_some() {
return;
}
// There are only seven pushes in this function, so that's sufficient.
let mut neighbours: Vec<(Edge, &Vertex)> = Vec::with_capacity(7);
if let (Some(lhs_syntax), Some(rhs_syntax)) = (&v.lhs_syntax, &v.rhs_syntax) {
if lhs_syntax == rhs_syntax {
let depth_difference = (lhs_syntax.num_ancestors() as i32
- rhs_syntax.num_ancestors() as i32)
.unsigned_abs();
let probably_punctuation = looks_like_punctuation(lhs_syntax);
// Both nodes are equal, the happy case.
let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) = pop_all_parents(
lhs_syntax.next_sibling(),
rhs_syntax.next_sibling(),
v.lhs_parent_id,
v.rhs_parent_id,
&v.parents,
alloc,
);
neighbours.push((
UnchangedNode {
depth_difference,
probably_punctuation,
},
allocate_if_new(
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id,
rhs_parent_id,
},
alloc,
seen,
),
));
}
if let (
Syntax::List {
open_content: lhs_open_content,
close_content: lhs_close_content,
children: lhs_children,
..
},
Syntax::List {
open_content: rhs_open_content,
close_content: rhs_close_content,
children: rhs_children,
..
},
) = (lhs_syntax, rhs_syntax)
{
// The list delimiters are equal, but children may not be.
if lhs_open_content == rhs_open_content && lhs_close_content == rhs_close_content {
let lhs_next = lhs_children.first().copied();
let rhs_next = rhs_children.first().copied();
// TODO: be consistent between parents_next and next_parents.
let parents_next = push_both_delimiters(&v.parents, lhs_syntax, rhs_syntax, alloc);
let depth_difference = (lhs_syntax.num_ancestors() as i32
- rhs_syntax.num_ancestors() as i32)
.unsigned_abs();
// When we enter a list, we may need to immediately
// pop several levels if the list has no children.
let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
pop_all_parents(
lhs_next,
rhs_next,
Some(lhs_syntax.id()),
Some(rhs_syntax.id()),
&parents_next,
alloc,
);
neighbours.push((
EnterUnchangedDelimiter { depth_difference },
allocate_if_new(
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id,
rhs_parent_id,
},
alloc,
seen,
),
));
}
}
if let (
Syntax::Atom {
content: lhs_content,
kind: lhs_kind @ AtomKind::Comment | lhs_kind @ AtomKind::String(_),
..
},
Syntax::Atom {
content: rhs_content,
kind: rhs_kind @ AtomKind::Comment | rhs_kind @ AtomKind::String(_),
..
},
) = (lhs_syntax, rhs_syntax)
{
// Both sides are comments/both sides are strings and
// their content is reasonably similar.
if lhs_kind == rhs_kind && lhs_content != rhs_content {
let levenshtein_pct =
(normalized_levenshtein(lhs_content, rhs_content) * 100.0).round() as u8;
let edge = if lhs_kind == &AtomKind::Comment {
ReplacedComment { levenshtein_pct }
} else {
ReplacedString { levenshtein_pct }
};
let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
pop_all_parents(
lhs_syntax.next_sibling(),
rhs_syntax.next_sibling(),
v.lhs_parent_id,
v.rhs_parent_id,
&v.parents,
alloc,
);
neighbours.push((
edge,
allocate_if_new(
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id,
rhs_parent_id,
},
alloc,
seen,
),
));
}
}
}
if let Some(lhs_syntax) = &v.lhs_syntax {
match lhs_syntax {
// Step over this novel atom.
Syntax::Atom { .. } => {
let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
pop_all_parents(
lhs_syntax.next_sibling(),
v.rhs_syntax,
v.lhs_parent_id,
v.rhs_parent_id,
&v.parents,
alloc,
);
neighbours.push((
NovelAtomLHS {},
allocate_if_new(
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id,
rhs_parent_id,
},
alloc,
seen,
),
));
}
// Step into this partially/fully novel list.
Syntax::List { children, .. } => {
let lhs_next = children.first().copied();
let parents_next = push_lhs_delimiter(&v.parents, lhs_syntax, alloc);
let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
pop_all_parents(
lhs_next,
v.rhs_syntax,
Some(lhs_syntax.id()),
v.rhs_parent_id,
&parents_next,
alloc,
);
neighbours.push((
EnterNovelDelimiterLHS {},
allocate_if_new(
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id,
rhs_parent_id,
},
alloc,
seen,
),
));
}
}
}
if let Some(rhs_syntax) = &v.rhs_syntax {
match rhs_syntax {
// Step over this novel atom.
Syntax::Atom { .. } => {
let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
pop_all_parents(
v.lhs_syntax,
rhs_syntax.next_sibling(),
v.lhs_parent_id,
v.rhs_parent_id,
&v.parents,
alloc,
);
neighbours.push((
NovelAtomRHS {},
allocate_if_new(
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id,
rhs_parent_id,
},
alloc,
seen,
),
));
}
// Step into this partially/fully novel list.
Syntax::List { children, .. } => {
let rhs_next = children.first().copied();
let parents_next = push_rhs_delimiter(&v.parents, rhs_syntax, alloc);
let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
pop_all_parents(
v.lhs_syntax,
rhs_next,
v.lhs_parent_id,
Some(rhs_syntax.id()),
&parents_next,
alloc,
);
neighbours.push((
EnterNovelDelimiterRHS {},
allocate_if_new(
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id,
rhs_parent_id,
},
alloc,
seen,
),
));
}
}
}
assert!(
!neighbours.is_empty(),
"Must always find some next steps if node is not the end"
);
v.neighbours
.replace(Some(alloc.alloc_slice_copy(neighbours.as_slice())));
}
pub(crate) fn populate_change_map<'s, 'b>(
route: &[(Edge, &'b Vertex<'s, 'b>)],
change_map: &mut ChangeMap<'s>,
) {
for (e, v) in route {
match e {
UnchangedNode { .. } => {
// No change on this node or its children.
let lhs = v.lhs_syntax.unwrap();
let rhs = v.rhs_syntax.unwrap();
insert_deep_unchanged(lhs, rhs, change_map);
insert_deep_unchanged(rhs, lhs, change_map);
}
EnterUnchangedDelimiter { .. } => {
// No change on the outer delimiter, but children may
// have changed.
let lhs = v.lhs_syntax.unwrap();
let rhs = v.rhs_syntax.unwrap();
change_map.insert(lhs, ChangeKind::Unchanged(rhs));
change_map.insert(rhs, ChangeKind::Unchanged(lhs));
}
ReplacedComment { levenshtein_pct } | ReplacedString { levenshtein_pct } => {
let lhs = v.lhs_syntax.unwrap();
let rhs = v.rhs_syntax.unwrap();
let change_kind = |first, second| {
if let ReplacedComment { .. } = e {
ChangeKind::ReplacedComment(first, second)
} else {
ChangeKind::ReplacedString(first, second)
}
};
if *levenshtein_pct > 20 {
change_map.insert(lhs, change_kind(lhs, rhs));
change_map.insert(rhs, change_kind(rhs, lhs));
} else {
change_map.insert(lhs, ChangeKind::Novel);
change_map.insert(rhs, ChangeKind::Novel);
}
}
NovelAtomLHS { .. } | EnterNovelDelimiterLHS { .. } => {
let lhs = v.lhs_syntax.unwrap();
change_map.insert(lhs, ChangeKind::Novel);
}
NovelAtomRHS { .. } | EnterNovelDelimiterRHS { .. } => {
let rhs = v.rhs_syntax.unwrap();
change_map.insert(rhs, ChangeKind::Novel);
}
}
}
}