1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
//! A graph representation for computing tree diffs.

use std::{
    cell::{Cell, RefCell},
    cmp::min,
    fmt,
    hash::{Hash, Hasher},
};

use bumpalo::Bump;
use hashbrown::hash_map::RawEntryMut;
use strsim::normalized_levenshtein;

use self::Edge::*;
use crate::{
    diff::{
        changes::{insert_deep_unchanged, ChangeKind, ChangeMap},
        stack::Stack,
    },
    hash::DftHashMap,
    parse::syntax::{AtomKind, Syntax, SyntaxId},
};

/// A vertex in a directed acyclic graph that represents a diff.
///
/// Each vertex represents two pointers: one to the next unmatched LHS
/// syntax, and one to the next unmatched RHS syntax.
///
/// For example, suppose we have `X A` on the LHS and `A` on the
/// RHS. Our start vertex looks like this.
///
/// ```text
/// LHS: X A     RHS: A
///      ^            ^
/// ```
///
/// From this vertex, we could take [`Edge::NovelAtomLHS`], bringing
/// us to this vertex.
///
/// ```text
/// LHS: X A     RHS: A
///        ^          ^
/// ```
///
/// Alternatively, we could take the [`Edge::NovelAtomRHS`], bringing us
/// to this vertex.
///
/// ```text
/// LHS: X A     RHS: A
///      ^              ^
/// ```
#[derive(Debug, Clone)]
pub(crate) struct Vertex<'s, 'b> {
    pub(crate) neighbours: RefCell<Option<Vec<(Edge, &'b Vertex<'s, 'b>)>>>,
    pub(crate) predecessor: Cell<Option<(u32, &'b Vertex<'s, 'b>)>>,
    // TODO: experiment with storing SyntaxId only, and have a HashMap
    // from SyntaxId to &Syntax.
    pub(crate) lhs_syntax: Option<&'s Syntax<'s>>,
    pub(crate) rhs_syntax: Option<&'s Syntax<'s>>,
    parents: Stack<EnteredDelimiter<'s>>,
    lhs_parent_id: Option<SyntaxId>,
    rhs_parent_id: Option<SyntaxId>,
}

impl<'s, 'b> PartialEq for Vertex<'s, 'b> {
    fn eq(&self, other: &Self) -> bool {
        // Strictly speaking, we should compare the whole
        // EnteredDelimiter stack, not just the immediate
        // parents. By taking the immediate parent, we have
        // vertices with different stacks that are 'equal'.
        //
        // This makes the graph traversal path dependent: the
        // first vertex we see 'wins', and we use it for deciding
        // how we can pop.
        //
        // In practice this seems to work well. The first vertex
        // has the lowest cost, so has the most PopBoth
        // occurrences, which is the best outcome.
        //
        // Handling this properly would require considering many
        // more vertices to be distinct, exponentially increasing
        // the graph size relative to tree depth.
        let b0 = match (self.lhs_syntax, other.lhs_syntax) {
            (Some(s0), Some(s1)) => s0.id() == s1.id(),
            (None, None) => self.lhs_parent_id == other.lhs_parent_id,
            _ => false,
        };
        let b1 = match (self.rhs_syntax, other.rhs_syntax) {
            (Some(s0), Some(s1)) => s0.id() == s1.id(),
            (None, None) => self.rhs_parent_id == other.rhs_parent_id,
            _ => false,
        };
        // We do want to distinguish whether we can pop each side
        // independently though. Without this, if we find a case
        // where we can pop sides together, we don't consider the
        // case where we get a better diff by popping each side
        // separately.
        let b2 = can_pop_either_parent(&self.parents) == can_pop_either_parent(&other.parents);

        b0 && b1 && b2
    }
}
impl<'s, 'b> Eq for Vertex<'s, 'b> {}

impl<'s, 'b> Hash for Vertex<'s, 'b> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.lhs_syntax.map(|node| node.id()).hash(state);
        self.rhs_syntax.map(|node| node.id()).hash(state);

        self.lhs_parent_id.hash(state);
        self.rhs_parent_id.hash(state);
        can_pop_either_parent(&self.parents).hash(state);
    }
}

/// Tracks entering syntax List nodes.
#[derive(Clone, PartialEq)]
enum EnteredDelimiter<'s> {
    /// If we've entered the LHS or RHS separately, we can pop either
    /// side independently.
    ///
    /// Assumes that at least one stack is non-empty.
    PopEither((Stack<&'s Syntax<'s>>, Stack<&'s Syntax<'s>>)),
    /// If we've entered the LHS and RHS together, we must pop both
    /// sides together too. Otherwise we'd consider the following case to have no changes.
    ///
    /// ```text
    /// Old: (a b c)
    /// New: (a b) c
    /// ```
    PopBoth((&'s Syntax<'s>, &'s Syntax<'s>)),
}

impl<'s> fmt::Debug for EnteredDelimiter<'s> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let desc = match self {
            EnteredDelimiter::PopEither((lhs_delims, rhs_delims)) => {
                format!(
                    "PopEither(lhs count: {}, rhs count: {})",
                    lhs_delims.size(),
                    rhs_delims.size()
                )
            }
            EnteredDelimiter::PopBoth(_) => "PopBoth".to_string(),
        };
        f.write_str(&desc)
    }
}

fn push_both_delimiters<'s>(
    entered: &Stack<EnteredDelimiter<'s>>,
    lhs_delim: &'s Syntax<'s>,
    rhs_delim: &'s Syntax<'s>,
) -> Stack<EnteredDelimiter<'s>> {
    entered.push(EnteredDelimiter::PopBoth((lhs_delim, rhs_delim)))
}

fn can_pop_either_parent(entered: &Stack<EnteredDelimiter>) -> bool {
    matches!(entered.peek(), Some(EnteredDelimiter::PopEither(_)))
}

fn try_pop_both<'s>(
    entered: &Stack<EnteredDelimiter<'s>>,
) -> Option<(&'s Syntax<'s>, &'s Syntax<'s>, Stack<EnteredDelimiter<'s>>)> {
    match entered.peek() {
        Some(EnteredDelimiter::PopBoth((lhs_delim, rhs_delim))) => {
            Some((lhs_delim, rhs_delim, entered.pop().unwrap()))
        }
        _ => None,
    }
}

fn try_pop_lhs<'s>(
    entered: &Stack<EnteredDelimiter<'s>>,
) -> Option<(&'s Syntax<'s>, Stack<EnteredDelimiter<'s>>)> {
    match entered.peek() {
        Some(EnteredDelimiter::PopEither((lhs_delims, rhs_delims))) => match lhs_delims.peek() {
            Some(lhs_delim) => {
                let mut entered = entered.pop().unwrap();
                let new_lhs_delims = lhs_delims.pop().unwrap();

                if !new_lhs_delims.is_empty() || !rhs_delims.is_empty() {
                    entered = entered.push(EnteredDelimiter::PopEither((
                        new_lhs_delims,
                        rhs_delims.clone(),
                    )));
                }

                Some((lhs_delim, entered))
            }
            None => None,
        },
        _ => None,
    }
}

fn try_pop_rhs<'s>(
    entered: &Stack<EnteredDelimiter<'s>>,
) -> Option<(&'s Syntax<'s>, Stack<EnteredDelimiter<'s>>)> {
    match entered.peek() {
        Some(EnteredDelimiter::PopEither((lhs_delims, rhs_delims))) => match rhs_delims.peek() {
            Some(rhs_delim) => {
                let mut entered = entered.pop().unwrap();
                let new_rhs_delims = rhs_delims.pop().unwrap();

                if !lhs_delims.is_empty() || !new_rhs_delims.is_empty() {
                    entered = entered.push(EnteredDelimiter::PopEither((
                        lhs_delims.clone(),
                        new_rhs_delims,
                    )));
                }

                Some((rhs_delim, entered))
            }
            None => None,
        },
        _ => None,
    }
}

fn push_lhs_delimiter<'s>(
    entered: &Stack<EnteredDelimiter<'s>>,
    delimiter: &'s Syntax<'s>,
) -> Stack<EnteredDelimiter<'s>> {
    match entered.peek() {
        Some(EnteredDelimiter::PopEither((lhs_delims, rhs_delims))) => entered.pop().unwrap().push(
            EnteredDelimiter::PopEither((lhs_delims.push(delimiter), rhs_delims.clone())),
        ),
        _ => entered.push(EnteredDelimiter::PopEither((
            Stack::new().push(delimiter),
            Stack::new(),
        ))),
    }
}

fn push_rhs_delimiter<'s>(
    entered: &Stack<EnteredDelimiter<'s>>,
    delimiter: &'s Syntax<'s>,
) -> Stack<EnteredDelimiter<'s>> {
    match entered.peek() {
        Some(EnteredDelimiter::PopEither((lhs_delims, rhs_delims))) => entered.pop().unwrap().push(
            EnteredDelimiter::PopEither((lhs_delims.clone(), rhs_delims.push(delimiter))),
        ),
        _ => entered.push(EnteredDelimiter::PopEither((
            Stack::new(),
            Stack::new().push(delimiter),
        ))),
    }
}

impl<'s, 'b> Vertex<'s, 'b> {
    pub(crate) fn is_end(&self) -> bool {
        self.lhs_syntax.is_none() && self.rhs_syntax.is_none() && self.parents.is_empty()
    }

    pub(crate) fn new(
        lhs_syntax: Option<&'s Syntax<'s>>,
        rhs_syntax: Option<&'s Syntax<'s>>,
    ) -> Self {
        let parents = Stack::new();
        Vertex {
            neighbours: RefCell::new(None),
            predecessor: Cell::new(None),
            lhs_syntax,
            rhs_syntax,
            parents,
            lhs_parent_id: None,
            rhs_parent_id: None,
        }
    }
}

/// An edge in our graph, with an associated [`cost`](Edge::cost).
///
/// A syntax node can always be marked as novel, so a vertex will have
/// at least a NovelFoo edge. Depending on the syntax nodes of the
/// current [`Vertex`], other edges may also be available.
///
/// See [`set_neighbours`] for all the edges available for a given `Vertex`.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub(crate) enum Edge {
    UnchangedNode {
        depth_difference: u32,
        /// Is this node just punctuation? We penalise this case,
        /// because it's more useful to match e.g. a variable name
        /// than a comma.
        probably_punctuation: bool,
    },
    EnterUnchangedDelimiter {
        depth_difference: u32,
    },
    ReplacedComment {
        levenshtein_pct: u8,
    },
    ReplacedString {
        levenshtein_pct: u8,
    },
    NovelAtomLHS {},
    NovelAtomRHS {},
    // TODO: An EnterNovelDelimiterBoth edge might help performance
    // rather doing LHS and RHS separately.
    EnterNovelDelimiterLHS {},
    EnterNovelDelimiterRHS {},
}

impl Edge {
    pub(crate) fn cost(self) -> u32 {
        match self {
            // Matching nodes is always best.
            UnchangedNode {
                depth_difference,
                probably_punctuation,
            } => {
                // TODO: Perhaps prefer matching longer strings? It's
                // probably easier to read.

                // The cost for unchanged nodes can be as low as 1,
                // but we penalise nodes that have a different depth
                // difference, capped at 40.
                let base = min(40, depth_difference + 1);

                // If the node is only punctuation, increase the
                // cost. It's better to have unchanged variable names
                // and novel punctuation than the reverse.
                //
                // We want a sufficiently large punctuation cost such
                // that unchanged variables always win, even if there
                // are replacement edges elsewhere.
                //
                // Replacement edges have a cost between 500 and 600,
                // so they can be up to 100 less than two novel nodes.
                // If we have replacements either side of a node
                // (e.g. see comma_and_comment_before.js), then that's
                // potentially a cost difference of 200.
                base + if probably_punctuation { 200 } else { 0 }
            }
            // Matching an outer delimiter is good.
            EnterUnchangedDelimiter { depth_difference } => 100 + min(40, depth_difference),

            // Otherwise, we've added/removed a node.
            NovelAtomLHS {} | NovelAtomRHS {} => 300,
            EnterNovelDelimiterLHS { .. } | EnterNovelDelimiterRHS { .. } => 300,
            // Replacing a comment is better than treating it as
            // novel. However, since ReplacedComment is an alternative
            // to NovelAtomLHS and NovelAtomRHS, we need to be
            // slightly less than 2 * 300.
            ReplacedComment { levenshtein_pct } | ReplacedString { levenshtein_pct } => {
                500 + u32::from(100 - levenshtein_pct)
            }
        }
    }
}

fn allocate_if_new<'s, 'b>(
    v: Vertex<'s, 'b>,
    alloc: &'b Bump,
    seen: &mut DftHashMap<&Vertex<'s, 'b>, Vec<&'b Vertex<'s, 'b>>>,
) -> &'b Vertex<'s, 'b> {
    // We use the entry API so that we only need to do a single lookup
    // for access and insert.
    match seen.raw_entry_mut().from_key(&v) {
        RawEntryMut::Occupied(mut occupied) => {
            let existing = occupied.get_mut();

            // Don't explore more than two possible parenthesis
            // nestings for each syntax node pair.
            if let Some(allocated) = existing.last() {
                if existing.len() >= 2 {
                    return allocated;
                }
            }

            // If we have seen exactly this graph node before, even
            // considering parenthesis matching, return it.
            for existing_node in existing.iter() {
                if existing_node.parents == v.parents {
                    return existing_node;
                }
            }

            // We haven't reached the graph node limit yet, allocate a
            // new one.
            let allocated = alloc.alloc(v);
            existing.push(allocated);
            allocated
        }
        RawEntryMut::Vacant(vacant) => {
            let allocated = alloc.alloc(v);

            // We know that this vec will never have more than 2
            // nodes, and this code is very hot, so reserve.
            //
            // We still use a vec to enable experiments with the value
            // of how many possible parenthesis nestings to explore.
            let mut existing: Vec<&'b Vertex<'s, 'b>> = Vec::with_capacity(2);
            existing.push(allocated);

            vacant.insert(allocated, existing);
            allocated
        }
    }
}

/// Does this node look like punctuation?
///
/// This check is deliberately conservative, because it's hard to
/// accurately recognise punctuation in a language-agnostic way.
fn looks_like_punctuation(node: &Syntax) -> bool {
    match node {
        Syntax::Atom { content, .. } => content == "," || content == ";" || content == ".",
        _ => false,
    }
}

/// Pop as many parents of `lhs_node` and `rhs_node` as
/// possible. Return the new syntax nodes and parents.
fn pop_all_parents<'s>(
    lhs_node: Option<&'s Syntax<'s>>,
    rhs_node: Option<&'s Syntax<'s>>,
    lhs_parent_id: Option<SyntaxId>,
    rhs_parent_id: Option<SyntaxId>,
    parents: &Stack<EnteredDelimiter<'s>>,
) -> (
    Option<&'s Syntax<'s>>,
    Option<&'s Syntax<'s>>,
    Option<SyntaxId>,
    Option<SyntaxId>,
    Stack<EnteredDelimiter<'s>>,
) {
    let mut lhs_node = lhs_node;
    let mut rhs_node = rhs_node;
    let mut lhs_parent_id = lhs_parent_id;
    let mut rhs_parent_id = rhs_parent_id;
    let mut parents = parents.clone();

    loop {
        if lhs_node.is_none() {
            if let Some((lhs_parent, parents_next)) = try_pop_lhs(&parents) {
                // Move to next after LHS parent.

                // Continue from sibling of parent.
                lhs_node = lhs_parent.next_sibling();
                lhs_parent_id = lhs_parent.parent().map(Syntax::id);
                parents = parents_next;
                continue;
            }
        }

        if rhs_node.is_none() {
            if let Some((rhs_parent, parents_next)) = try_pop_rhs(&parents) {
                // Move to next after RHS parent.

                // Continue from sibling of parent.
                rhs_node = rhs_parent.next_sibling();
                rhs_parent_id = rhs_parent.parent().map(Syntax::id);
                parents = parents_next;
                continue;
            }
        }

        if lhs_node.is_none() && rhs_node.is_none() {
            // We have exhausted all the nodes on both lists, so we can
            // move up to the parent node.

            // Continue from sibling of parent.
            if let Some((lhs_parent, rhs_parent, parents_next)) = try_pop_both(&parents) {
                lhs_node = lhs_parent.next_sibling();
                rhs_node = rhs_parent.next_sibling();
                lhs_parent_id = lhs_parent.parent().map(Syntax::id);
                rhs_parent_id = rhs_parent.parent().map(Syntax::id);
                parents = parents_next;
                continue;
            }
        }

        break;
    }

    (lhs_node, rhs_node, lhs_parent_id, rhs_parent_id, parents)
}

/// Compute the neighbours of `v` if we haven't previously done so,
/// and write them to the .neighbours cell inside `v`.
pub(crate) fn set_neighbours<'s, 'b>(
    v: &Vertex<'s, 'b>,
    alloc: &'b Bump,
    seen: &mut DftHashMap<&Vertex<'s, 'b>, Vec<&'b Vertex<'s, 'b>>>,
) {
    if v.neighbours.borrow().is_some() {
        return;
    }

    // There are only seven pushes in this function, so that's sufficient.
    let mut neighbours: Vec<(Edge, &Vertex)> = Vec::with_capacity(7);

    if let (Some(lhs_syntax), Some(rhs_syntax)) = (&v.lhs_syntax, &v.rhs_syntax) {
        if lhs_syntax == rhs_syntax {
            let depth_difference = (lhs_syntax.num_ancestors() as i32
                - rhs_syntax.num_ancestors() as i32)
                .unsigned_abs();

            let probably_punctuation = looks_like_punctuation(lhs_syntax);

            // Both nodes are equal, the happy case.
            let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) = pop_all_parents(
                lhs_syntax.next_sibling(),
                rhs_syntax.next_sibling(),
                v.lhs_parent_id,
                v.rhs_parent_id,
                &v.parents,
            );

            neighbours.push((
                UnchangedNode {
                    depth_difference,
                    probably_punctuation,
                },
                allocate_if_new(
                    Vertex {
                        neighbours: RefCell::new(None),
                        predecessor: Cell::new(None),
                        lhs_syntax,
                        rhs_syntax,
                        parents,
                        lhs_parent_id,
                        rhs_parent_id,
                    },
                    alloc,
                    seen,
                ),
            ));
        }

        if let (
            Syntax::List {
                open_content: lhs_open_content,
                close_content: lhs_close_content,
                children: lhs_children,
                ..
            },
            Syntax::List {
                open_content: rhs_open_content,
                close_content: rhs_close_content,
                children: rhs_children,
                ..
            },
        ) = (lhs_syntax, rhs_syntax)
        {
            // The list delimiters are equal, but children may not be.
            if lhs_open_content == rhs_open_content && lhs_close_content == rhs_close_content {
                let lhs_next = lhs_children.first().copied();
                let rhs_next = rhs_children.first().copied();

                // TODO: be consistent between parents_next and next_parents.
                let parents_next = push_both_delimiters(&v.parents, lhs_syntax, rhs_syntax);

                let depth_difference = (lhs_syntax.num_ancestors() as i32
                    - rhs_syntax.num_ancestors() as i32)
                    .unsigned_abs();

                // When we enter a list, we may need to immediately
                // pop several levels if the list has no children.
                let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
                    pop_all_parents(
                        lhs_next,
                        rhs_next,
                        Some(lhs_syntax.id()),
                        Some(rhs_syntax.id()),
                        &parents_next,
                    );

                neighbours.push((
                    EnterUnchangedDelimiter { depth_difference },
                    allocate_if_new(
                        Vertex {
                            neighbours: RefCell::new(None),
                            predecessor: Cell::new(None),
                            lhs_syntax,
                            rhs_syntax,
                            parents,
                            lhs_parent_id,
                            rhs_parent_id,
                        },
                        alloc,
                        seen,
                    ),
                ));
            }
        }

        if let (
            Syntax::Atom {
                content: lhs_content,
                kind: lhs_kind @ AtomKind::Comment | lhs_kind @ AtomKind::String(_),
                ..
            },
            Syntax::Atom {
                content: rhs_content,
                kind: rhs_kind @ AtomKind::Comment | rhs_kind @ AtomKind::String(_),
                ..
            },
        ) = (lhs_syntax, rhs_syntax)
        {
            // Both sides are comments/both sides are strings and
            // their content is reasonably similar.
            if lhs_kind == rhs_kind && lhs_content != rhs_content {
                let levenshtein_pct =
                    (normalized_levenshtein(lhs_content, rhs_content) * 100.0).round() as u8;
                let edge = if lhs_kind == &AtomKind::Comment {
                    ReplacedComment { levenshtein_pct }
                } else {
                    ReplacedString { levenshtein_pct }
                };

                let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
                    pop_all_parents(
                        lhs_syntax.next_sibling(),
                        rhs_syntax.next_sibling(),
                        v.lhs_parent_id,
                        v.rhs_parent_id,
                        &v.parents,
                    );
                neighbours.push((
                    edge,
                    allocate_if_new(
                        Vertex {
                            neighbours: RefCell::new(None),
                            predecessor: Cell::new(None),
                            lhs_syntax,
                            rhs_syntax,
                            parents,
                            lhs_parent_id,
                            rhs_parent_id,
                        },
                        alloc,
                        seen,
                    ),
                ));
            }
        }
    }

    if let Some(lhs_syntax) = &v.lhs_syntax {
        match lhs_syntax {
            // Step over this novel atom.
            Syntax::Atom { .. } => {
                let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
                    pop_all_parents(
                        lhs_syntax.next_sibling(),
                        v.rhs_syntax,
                        v.lhs_parent_id,
                        v.rhs_parent_id,
                        &v.parents,
                    );

                neighbours.push((
                    NovelAtomLHS {},
                    allocate_if_new(
                        Vertex {
                            neighbours: RefCell::new(None),
                            predecessor: Cell::new(None),
                            lhs_syntax,
                            rhs_syntax,
                            parents,
                            lhs_parent_id,
                            rhs_parent_id,
                        },
                        alloc,
                        seen,
                    ),
                ));
            }
            // Step into this partially/fully novel list.
            Syntax::List { children, .. } => {
                let lhs_next = children.first().copied();

                let parents_next = push_lhs_delimiter(&v.parents, lhs_syntax);

                let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
                    pop_all_parents(
                        lhs_next,
                        v.rhs_syntax,
                        Some(lhs_syntax.id()),
                        v.rhs_parent_id,
                        &parents_next,
                    );

                neighbours.push((
                    EnterNovelDelimiterLHS {},
                    allocate_if_new(
                        Vertex {
                            neighbours: RefCell::new(None),
                            predecessor: Cell::new(None),
                            lhs_syntax,
                            rhs_syntax,
                            parents,
                            lhs_parent_id,
                            rhs_parent_id,
                        },
                        alloc,
                        seen,
                    ),
                ));
            }
        }
    }

    if let Some(rhs_syntax) = &v.rhs_syntax {
        match rhs_syntax {
            // Step over this novel atom.
            Syntax::Atom { .. } => {
                let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
                    pop_all_parents(
                        v.lhs_syntax,
                        rhs_syntax.next_sibling(),
                        v.lhs_parent_id,
                        v.rhs_parent_id,
                        &v.parents,
                    );

                neighbours.push((
                    NovelAtomRHS {},
                    allocate_if_new(
                        Vertex {
                            neighbours: RefCell::new(None),
                            predecessor: Cell::new(None),
                            lhs_syntax,
                            rhs_syntax,
                            parents,
                            lhs_parent_id,
                            rhs_parent_id,
                        },
                        alloc,
                        seen,
                    ),
                ));
            }
            // Step into this partially/fully novel list.
            Syntax::List { children, .. } => {
                let rhs_next = children.first().copied();
                let parents_next = push_rhs_delimiter(&v.parents, rhs_syntax);

                let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
                    pop_all_parents(
                        v.lhs_syntax,
                        rhs_next,
                        v.lhs_parent_id,
                        Some(rhs_syntax.id()),
                        &parents_next,
                    );

                neighbours.push((
                    EnterNovelDelimiterRHS {},
                    allocate_if_new(
                        Vertex {
                            neighbours: RefCell::new(None),
                            predecessor: Cell::new(None),
                            lhs_syntax,
                            rhs_syntax,
                            parents,
                            lhs_parent_id,
                            rhs_parent_id,
                        },
                        alloc,
                        seen,
                    ),
                ));
            }
        }
    }
    assert!(
        !neighbours.is_empty(),
        "Must always find some next steps if node is not the end"
    );

    v.neighbours.replace(Some(neighbours));
}

pub(crate) fn populate_change_map<'s, 'b>(
    route: &[(Edge, &'b Vertex<'s, 'b>)],
    change_map: &mut ChangeMap<'s>,
) {
    for (e, v) in route {
        match e {
            UnchangedNode { .. } => {
                // No change on this node or its children.
                let lhs = v.lhs_syntax.unwrap();
                let rhs = v.rhs_syntax.unwrap();

                insert_deep_unchanged(lhs, rhs, change_map);
                insert_deep_unchanged(rhs, lhs, change_map);
            }
            EnterUnchangedDelimiter { .. } => {
                // No change on the outer delimiter, but children may
                // have changed.
                let lhs = v.lhs_syntax.unwrap();
                let rhs = v.rhs_syntax.unwrap();
                change_map.insert(lhs, ChangeKind::Unchanged(rhs));
                change_map.insert(rhs, ChangeKind::Unchanged(lhs));
            }
            ReplacedComment { levenshtein_pct } | ReplacedString { levenshtein_pct } => {
                let lhs = v.lhs_syntax.unwrap();
                let rhs = v.rhs_syntax.unwrap();
                let change_kind = |first, second| {
                    if let ReplacedComment { .. } = e {
                        ChangeKind::ReplacedComment(first, second)
                    } else {
                        ChangeKind::ReplacedString(first, second)
                    }
                };

                if *levenshtein_pct > 20 {
                    change_map.insert(lhs, change_kind(lhs, rhs));
                    change_map.insert(rhs, change_kind(rhs, lhs));
                } else {
                    change_map.insert(lhs, ChangeKind::Novel);
                    change_map.insert(rhs, ChangeKind::Novel);
                }
            }
            NovelAtomLHS { .. } | EnterNovelDelimiterLHS { .. } => {
                let lhs = v.lhs_syntax.unwrap();
                change_map.insert(lhs, ChangeKind::Novel);
            }
            NovelAtomRHS { .. } | EnterNovelDelimiterRHS { .. } => {
                let rhs = v.rhs_syntax.unwrap();
                change_map.insert(rhs, ChangeKind::Novel);
            }
        }
    }
}