1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
//! Prefer contiguous novel nodes on the same line.
//!
//! A slider takes the following form:
//!
//! Old:
//!
//! ```text
//! A B
//! C D
//! ```
//!
//! New:
//!
//! ```text
//! A B
//! A B
//! C D
//! ```
//!
//! It would be correct, but ugly, to show the following diff:
//!
//! ```text
//! A +B+
//! +A+ B
//! C D
//! ```
//!
//! This module fixes these cases. It identifies situations where we
//! can change which item is marked as novel (e.g. either `B` in the
//! example above) whilst still showing a valid, minimal diff.
use line_numbers::SingleLineSpan;
use crate::{
diff::changes::{insert_deep_novel, insert_deep_unchanged, ChangeKind::*, ChangeMap},
parse::guess_language,
parse::syntax::Syntax::{self, *},
};
pub(crate) fn fix_all_sliders<'a>(
language: guess_language::Language,
nodes: &[&'a Syntax<'a>],
change_map: &mut ChangeMap<'a>,
) {
// TODO: fix sliders that require more than two steps.
fix_all_sliders_one_step(nodes, change_map);
fix_all_sliders_one_step(nodes, change_map);
fix_all_nested_sliders(language, nodes, change_map);
}
/// Should nester slider correction prefer the inner or outer
/// delimiter?
fn prefer_outer_delimiter(language: guess_language::Language) -> bool {
use crate::parse::guess_language::Language::*;
match language {
// For Lisp family languages, we get the best result with the
// outer delimiter.
EmacsLisp | Clojure | CommonLisp | Janet | Racket | Scheme | Newick => true,
// JSON and TOML are like Lisp: the outer delimiter in an array object
// is the most relevant.
Json | Toml | Hcl => true,
// It's probably the case that outer delimiters
// (e.g. grouping) are used more frequently than inner
// delimiters in SQL. `(foo = 1 OR bar = 2)` is more likely
// than `foo(1)`.
Sql => true,
// For everything else, prefer the inner delimiter. These
// languages have syntax like `foo(bar)` or `foo[bar]` where
// the inner delimiter is more relevant.
_ => false,
}
}
fn fix_all_sliders_one_step<'a>(nodes: &[&'a Syntax<'a>], change_map: &mut ChangeMap<'a>) {
for node in nodes {
if let List { children, .. } = node {
fix_all_sliders_one_step(children, change_map);
}
}
fix_sliders(nodes, change_map);
}
/// Correct sliders in middle insertions.
///
/// Consider the code:
///
/// ```text
/// // Before
/// old1(old2);
/// // After
/// old1(new1(old2));
/// ```
///
/// Tree diffing has two possible solution here. Either we've added
/// `new1(...)` or we've added `(new1...)`. Both are valid.
///
/// For C-like languages, the first case matches human intuition much
/// better. Fix the slider to make the inner delimiter novel.
fn fix_all_nested_sliders<'a>(
language: guess_language::Language,
nodes: &[&'a Syntax<'a>],
change_map: &mut ChangeMap<'a>,
) {
let prefer_outer = prefer_outer_delimiter(language);
for node in nodes {
if prefer_outer {
fix_nested_slider_prefer_outer(node, change_map);
} else {
fix_nested_slider_prefer_inner(node, change_map);
}
}
}
/// When we see code of the form `(old-1 (novel (old-2)))`, prefer
/// treating the outer delimiter as novel, so `(novel ...)` in this
/// example.
fn fix_nested_slider_prefer_outer<'a>(node: &'a Syntax<'a>, change_map: &mut ChangeMap<'a>) {
if let List { children, .. } = node {
match change_map
.get(node)
.expect("Changes should be set before slider correction")
{
Unchanged(_) => {
let mut candidates = vec![];
unchanged_descendants_for_outer_slider(children, &mut candidates, change_map);
// We can slide if there is a single unchanged
// descendant, that descendant is a list, and that
// list has novel delimiters.
if let [candidate] = candidates[..] {
if matches!(candidate, List { .. })
&& matches!(change_map.get(candidate), Some(Novel))
{
push_unchanged_to_descendant(node, candidate, change_map);
}
}
}
ReplacedComment(_, _) | ReplacedString(_, _) | Novel => {}
}
for child in children {
fix_nested_slider_prefer_outer(child, change_map);
}
}
}
/// When we see code of the form `old1(novel(old2()))`, prefer
/// treating the inner delimiter as novel, so `novel(...)` in this
/// example.
fn fix_nested_slider_prefer_inner<'a>(node: &'a Syntax<'a>, change_map: &mut ChangeMap<'a>) {
if let List { children, .. } = node {
match change_map
.get(node)
.expect("Changes should be set before slider correction")
{
Unchanged(_) => {}
ReplacedComment(_, _) | ReplacedString(_, _) => {}
Novel => {
let mut found_unchanged = vec![];
unchanged_descendants(children, &mut found_unchanged, change_map);
if let [List { .. }] = found_unchanged[..] {
push_unchanged_to_ancestor(node, found_unchanged[0], change_map);
}
}
}
for child in children {
fix_nested_slider_prefer_inner(child, change_map);
}
}
}
/// Find the unchanged descendants of `nodes`.
fn unchanged_descendants<'a>(
nodes: &[&'a Syntax<'a>],
found: &mut Vec<&'a Syntax<'a>>,
change_map: &ChangeMap<'a>,
) {
// We're only interested if there is exactly one unchanged
// descendant, so return early if we find 2 or more.
if found.len() > 1 {
return;
}
for node in nodes {
match change_map.get(node).unwrap() {
Unchanged(_) => {
found.push(node);
}
Novel | ReplacedComment(_, _) | ReplacedString(_, _) => {
if let List { children, .. } = node {
unchanged_descendants(children, found, change_map);
}
}
}
}
}
/// Nested sliders require a single unchanged descendant whose
/// delimiters we can slide.
///
/// ```
/// (old-1 (novel (old-2)))
/// ```
///
/// To slide, we want a single list that contains unchanged items but
/// the outer delimiters are novel.
///
/// Find all the unchanged descendants.
fn unchanged_descendants_for_outer_slider<'a>(
nodes: &[&'a Syntax<'a>],
found: &mut Vec<&'a Syntax<'a>>,
change_map: &ChangeMap<'a>,
) {
// We're only interested if there is exactly one unchanged
// descendant, so return early if we find 2 or more.
if found.len() > 1 {
return;
}
for node in nodes {
let is_unchanged = matches!(change_map.get(node), Some(Unchanged(_)));
match node {
Atom { .. } => {
if is_unchanged {
// If there's an unchanged atom descendant, we
// can't slide. Sliding the delimiters requires a
// single list, or we are potentially changing the
// diff semantically.
//
// Add to the found items, but terminate early
// since we'll never slide.
found.push(node);
break;
} else {
// Novel atom. This is fine, we're looking for a
// single unchanged node.
}
}
List { children, .. } => {
if is_unchanged {
// This list is unchanged, and the delimiters are
// unchanged. It's an unchanged descendant, but we
// won't be able to slide its delimiters because
// its delimiters are unchanged.
//
// Add to the found items, but terminate early
// since we'll never slide.
found.push(node);
break;
} else {
// A list whose outer delimiters are novel.
let has_unchanged_children = children
.iter()
.any(|node| matches!(change_map.get(node), Some(Unchanged(_))));
if has_unchanged_children {
// The list has unchanged children and novel
// delimiters. This is a candidate for
// sliding.
found.push(node);
} else {
// All of the immediate children are novel,
// recurse in case they have descendants that
// are unchanged.
unchanged_descendants_for_outer_slider(children, found, change_map);
}
}
}
}
}
}
/// Given a nested list where the root delimiters are unchanged but
/// the inner list's delimiters are novel, mark the inner list as
/// unchanged instead.
fn push_unchanged_to_descendant<'a>(
root: &'a Syntax<'a>,
inner: &'a Syntax<'a>,
change_map: &mut ChangeMap<'a>,
) {
let root_change = change_map
.get(root)
.expect("Changes should be set before slider correction");
let delimiters_match = match (root, inner) {
(
List {
open_content: root_open,
close_content: root_close,
..
},
List {
open_content: inner_open,
close_content: inner_close,
..
},
) => root_open == inner_open && root_close == inner_close,
_ => false,
};
if delimiters_match {
change_map.insert(root, Novel);
change_map.insert(inner, root_change);
}
}
/// Given a nested list where the root delimiters are novel but
/// the inner list's delimiters are unchanged, mark the root list as
/// unchanged instead.
fn push_unchanged_to_ancestor<'a>(
root: &'a Syntax<'a>,
inner: &'a Syntax<'a>,
change_map: &mut ChangeMap<'a>,
) {
let inner_change = change_map.get(inner).expect("Node changes should be set");
let delimiters_match = match (root, inner) {
(
List {
open_content: root_open,
close_content: root_close,
..
},
List {
open_content: inner_open,
close_content: inner_close,
..
},
) => root_open == inner_open && root_close == inner_close,
_ => false,
};
if delimiters_match {
change_map.insert(root, inner_change);
change_map.insert(inner, Novel);
}
}
/// For every sequence of novel nodes, if it's a potential slider,
/// change which nodes are marked as novel if it produces a sequence
/// of nodes that are closer together.
fn fix_sliders<'a>(nodes: &[&'a Syntax<'a>], change_map: &mut ChangeMap<'a>) {
for (region_start, region_end) in novel_regions_after_unchanged(nodes, change_map) {
slide_to_prev_node(nodes, change_map, region_start, region_end);
}
for (region_start, region_end) in novel_regions_before_unchanged(nodes, change_map) {
slide_to_next_node(nodes, change_map, region_start, region_end);
}
}
/// Return the start and end indexes of sequences of novel nodes that
/// occur after unchanged nodes.
fn novel_regions_after_unchanged<'a>(
nodes: &[&'a Syntax<'a>],
change_map: &ChangeMap<'a>,
) -> Vec<(usize, usize)> {
let mut regions: Vec<Vec<usize>> = vec![];
let mut region: Option<Vec<usize>> = None;
for (i, node) in nodes.iter().enumerate() {
let change = change_map.get(node).expect("Node changes should be set");
match change {
Unchanged(_) => {
// Could have just finished a novel region.
if let Some(region) = region {
regions.push(region);
}
// Could be the unchanged node before a novel region.
region = Some(vec![]);
}
Novel => {
if let Some(mut r) = region {
r.push(i);
region = Some(r);
}
}
ReplacedComment(_, _) | ReplacedString(_, _) => {
// Could have just finished a novel region.
if let Some(region) = region {
regions.push(region);
}
region = None;
}
}
}
if let Some(region) = region {
regions.push(region);
}
regions
.into_iter()
.filter(|r| !r.is_empty())
.map(|r| (*r.first().unwrap(), *r.last().unwrap()))
.collect()
}
/// Return the start and end indexes of sequences of novel nodes that
/// occur before unchanged nodes.
fn novel_regions_before_unchanged<'a>(
nodes: &[&'a Syntax<'a>],
change_map: &ChangeMap<'a>,
) -> Vec<(usize, usize)> {
let mut regions: Vec<Vec<usize>> = vec![];
let mut region: Option<Vec<usize>> = None;
for (i, node) in nodes.iter().enumerate() {
let change = change_map.get(node).expect("Node changes should be set");
match change {
Unchanged(_) => {
// Could have just finished a novel region.
if let Some(region) = region {
regions.push(region);
}
region = None;
}
Novel => {
let mut r = if let Some(r) = region { r } else { vec![] };
r.push(i);
region = Some(r);
}
ReplacedComment(_, _) | ReplacedString(_, _) => {
region = None;
}
}
}
if let Some(region) = region {
regions.push(region);
}
regions
.into_iter()
.filter(|r| !r.is_empty())
.map(|r| (*r.first().unwrap(), *r.last().unwrap()))
.collect()
}
fn is_novel_deep<'a>(node: &Syntax<'a>, change_map: &ChangeMap<'a>) -> bool {
match node {
List { children, .. } => {
if !matches!(change_map.get(node), Some(Novel)) {
return false;
}
for child in children {
if !is_novel_deep(child, change_map) {
return false;
}
}
true
}
Atom { .. } => matches!(change_map.get(node), Some(Novel)),
}
}
/// If the previous node is unchanged, matches the end of the region,
/// and has a smaller text distance, mark it as novel.
///
/// ```text
/// x UNCHANGED
/// y NOVEL <- start_idx
///
/// x NOVEL <- end_idx
/// ```
///
/// After this function:
///
/// ```text
/// x NOVEL
/// y NOVEL
///
/// x UNCHANGED
/// ```
fn slide_to_prev_node<'a>(
nodes: &[&'a Syntax<'a>],
change_map: &mut ChangeMap<'a>,
start_idx: usize,
end_idx: usize,
) {
if start_idx == 0 {
return;
}
if start_idx == end_idx {
return;
}
let start_node = nodes[start_idx];
let last_node = nodes[end_idx];
let before_start_node = nodes[start_idx - 1];
let before_last_node = nodes[end_idx - 1];
if before_start_node.content_id() != last_node.content_id() {
return;
}
let distance_to_before_start = distance_between(before_start_node, start_node);
let distance_to_last = distance_between(before_last_node, last_node);
if distance_to_before_start <= distance_to_last {
let opposite = match change_map
.get(before_start_node)
.expect("Node changes should be set")
{
Unchanged(n) => {
if before_start_node.content_id() != n.content_id() {
return;
}
n
}
_ => {
return;
}
};
for node in &nodes[start_idx..=end_idx] {
if !is_novel_deep(node, change_map) {
return;
}
}
insert_deep_novel(before_start_node, change_map);
insert_deep_unchanged(last_node, opposite, change_map);
insert_deep_unchanged(opposite, last_node, change_map);
}
}
/// If the next node is unchanged, matches the beginning of the region,
/// and has a smaller text distance, mark it as novel.
///
/// ```text
/// x NOVEL <- start_idx
///
/// y NOVEL <- end_idx
/// x UNCHANGED
/// ```
///
/// After this function:
///
/// ```text
/// x UNCHANGED
///
/// y NOVEL
/// x NOVEL
/// ```
fn slide_to_next_node<'a>(
nodes: &[&'a Syntax<'a>],
change_map: &mut ChangeMap<'a>,
start_idx: usize,
end_idx: usize,
) {
if end_idx == nodes.len() - 1 {
return;
}
if start_idx == end_idx {
return;
}
let start_node = nodes[start_idx];
let last_node = nodes[end_idx];
let after_start_node = nodes[start_idx + 1];
let after_last_node = nodes[end_idx + 1];
if after_last_node.content_id() != start_node.content_id() {
return;
}
let distance_to_start = distance_between(start_node, after_start_node);
let distance_to_after_last = distance_between(last_node, after_last_node);
if distance_to_after_last < distance_to_start {
let opposite = match change_map
.get(after_last_node)
.expect("Node changes should be set")
{
Unchanged(n) => {
if after_last_node.content_id() != n.content_id() {
return;
}
n
}
_ => {
return;
}
};
for node in &nodes[start_idx..=end_idx] {
if !is_novel_deep(node, change_map) {
return;
}
}
insert_deep_unchanged(start_node, opposite, change_map);
insert_deep_unchanged(opposite, start_node, change_map);
insert_deep_novel(after_last_node, change_map);
}
}
/// Return the distance between two syntax nodes, as a tuple of number
/// of lines and number of columns.
fn distance_between(prev: &Syntax, next: &Syntax) -> (u32, u32) {
let prev_pos = prev.last_line_span();
let next_pos = next.first_line_span();
if let (Some(prev_pos), Some(next_pos)) = (prev_pos, next_pos) {
if prev_pos.line != next_pos.line {
return (next_pos.line.0 - prev_pos.line.0, 0);
}
return (0, next_pos.start_col - prev_pos.end_col);
}
(0, 0)
}
impl<'a> Syntax<'a> {
fn first_line_span(&self) -> Option<SingleLineSpan> {
match self {
List {
open_position,
children,
close_position,
..
} => {
if let Some(position) = open_position.first() {
return Some(*position);
}
for child in children {
if let Some(position) = child.first_line_span() {
return Some(position);
}
}
close_position.first().copied()
}
Atom { position, .. } => position.first().copied(),
}
}
fn last_line_span(&self) -> Option<SingleLineSpan> {
match self {
List {
open_position,
children,
close_position,
..
} => {
if let Some(position) = close_position.last() {
return Some(*position);
}
for child in children.iter().rev() {
if let Some(position) = child.last_line_span() {
return Some(position);
}
}
open_position.last().copied()
}
Atom { position, .. } => position.last().copied(),
}
}
}
#[cfg(test)]
mod tests {
use pretty_assertions::assert_eq;
use typed_arena::Arena;
use super::*;
use crate::{
parse::guess_language,
parse::tree_sitter_parser::{from_language, parse},
syntax::{init_all_info, AtomKind},
};
/// Test that we slide at the start if the unchanged node is
/// closer than the trailing novel node.
#[test]
fn test_slider_at_start() {
let arena = Arena::new();
let line1a = vec![SingleLineSpan {
line: 0.into(),
start_col: 0,
end_col: 1,
}];
let line1b = vec![SingleLineSpan {
line: 0.into(),
start_col: 10,
end_col: 11,
}];
let line2 = vec![SingleLineSpan {
line: 1.into(),
start_col: 3,
end_col: 4,
}];
let lhs = [
Syntax::new_atom(&arena, line1a, "a", AtomKind::Comment),
Syntax::new_atom(&arena, line1b, "b", AtomKind::Comment),
Syntax::new_atom(&arena, line2, "a", AtomKind::Comment),
];
let pos = vec![SingleLineSpan {
line: 99.into(),
start_col: 1,
end_col: 2,
}];
let rhs = [Syntax::new_atom(&arena, pos, "a", AtomKind::Comment)];
init_all_info(&lhs, &rhs);
let mut change_map = ChangeMap::default();
change_map.insert(lhs[0], Unchanged(rhs[0]));
change_map.insert(lhs[1], Novel);
change_map.insert(lhs[2], Novel);
fix_all_sliders(guess_language::Language::EmacsLisp, &lhs, &mut change_map);
assert_eq!(change_map.get(lhs[0]), Some(Novel));
assert_eq!(change_map.get(lhs[1]), Some(Novel));
assert_eq!(change_map.get(lhs[2]), Some(Unchanged(rhs[0])));
assert_eq!(change_map.get(rhs[0]), Some(Unchanged(lhs[2])));
}
/// Test that we slide at the end if the unchanged node is
/// closer than the leading novel node.
#[test]
fn test_slider_at_end() {
let arena = Arena::new();
let line1 = vec![SingleLineSpan {
line: 0.into(),
start_col: 0,
end_col: 1,
}];
let line2a = vec![SingleLineSpan {
line: 1.into(),
start_col: 10,
end_col: 11,
}];
let line2b = vec![SingleLineSpan {
line: 1.into(),
start_col: 12,
end_col: 13,
}];
let lhs = [
Syntax::new_atom(&arena, line1, "a", AtomKind::Comment),
Syntax::new_atom(&arena, line2a, "b", AtomKind::Comment),
Syntax::new_atom(&arena, line2b, "a", AtomKind::Comment),
];
let pos = vec![SingleLineSpan {
line: 99.into(),
start_col: 1,
end_col: 2,
}];
let rhs = [Syntax::new_atom(&arena, pos, "a", AtomKind::Comment)];
init_all_info(&lhs, &rhs);
let mut change_map = ChangeMap::default();
change_map.insert(lhs[0], Novel);
change_map.insert(lhs[1], Novel);
change_map.insert(lhs[2], Unchanged(rhs[0]));
fix_all_sliders(guess_language::Language::EmacsLisp, &lhs, &mut change_map);
assert_eq!(change_map.get(rhs[0]), Some(Unchanged(lhs[0])));
assert_eq!(change_map.get(lhs[0]), Some(Unchanged(rhs[0])));
assert_eq!(change_map.get(lhs[1]), Some(Novel));
assert_eq!(change_map.get(lhs[2]), Some(Novel));
}
#[test]
fn test_slider_two_steps() {
let arena = Arena::new();
let config = from_language(guess_language::Language::EmacsLisp);
let lhs = parse(&arena, "A B", &config, false);
let rhs = parse(&arena, "A B X\n A B", &config, false);
init_all_info(&lhs, &rhs);
let mut change_map = ChangeMap::default();
change_map.insert(rhs[0], Unchanged(lhs[0]));
change_map.insert(rhs[1], Unchanged(lhs[1]));
change_map.insert(rhs[2], Novel);
change_map.insert(rhs[3], Novel);
change_map.insert(rhs[4], Novel);
fix_all_sliders(guess_language::Language::EmacsLisp, &rhs, &mut change_map);
assert_eq!(change_map.get(rhs[0]), Some(Novel));
assert_eq!(change_map.get(rhs[1]), Some(Novel));
assert_eq!(change_map.get(rhs[2]), Some(Novel));
assert_eq!(change_map.get(rhs[3]), Some(Unchanged(rhs[0])));
}
/// If a list is partially unchanged but contains some novel
/// children, we should not slide it.
#[test]
fn test_slider_partially_unchanged() {
let arena = Arena::new();
let config = from_language(guess_language::Language::EmacsLisp);
let lhs = parse(&arena, "(A B) X \n (A B)", &config, false);
let rhs = parse(&arena, "((novel) A B)", &config, false);
init_all_info(&lhs, &rhs);
let lhs_first_list_children = match lhs[0] {
List { children, .. } => children,
Atom { .. } => unreachable!(),
};
let rhs_first_list_children = match rhs[0] {
List { children, .. } => children,
Atom { .. } => unreachable!(),
};
let mut change_map = ChangeMap::default();
change_map.insert(lhs[0], Unchanged(rhs[0]));
change_map.insert(lhs[1], Novel);
insert_deep_novel(lhs[2], &mut change_map);
change_map.insert(
lhs_first_list_children[0],
Unchanged(rhs_first_list_children[1]),
);
change_map.insert(
lhs_first_list_children[1],
Unchanged(rhs_first_list_children[2]),
);
fix_all_sliders(guess_language::Language::EmacsLisp, &lhs, &mut change_map);
assert_eq!(
change_map.get(lhs[2]),
Some(Novel),
"The novel node at the end should be unaffected"
);
}
}